Graph theory Nodes and edges

Bruce Merry

Simple graph

Weighted graph

Directed graph

Multigraph

Tree

Other terminology

- path

Other terminology

- path
- cycle

Other terminology

- path
- cycle
- connected

Other terminology

- path
- cycle
- connected
- complete

Other terminology

- path
- cycle
- connected
- complete
- degree

Other terminology

- path
- cycle
- connected
- complete
- degree
- dense and sparse

Other terminology

- path
- cycle
- connected
- complete
- degree
- dense and sparse
- forest

Representation

		A	B	C	D	E	F	G	H
	A		2	5	20				
B $1 E^{3} H$	B	2		6		1			
$2 \square 6$	C	5	6		3	1			
A C	D	20		3					
	E		1	1					3
$\mathrm{D}^{30} F^{5} G$	F							5	
	G						5		
	H					3			

Representation

Breadth first search

(A, 0)

Breadth first search

Breadth first search

(B, 1)

Breadth first search

Breadth first search

(E, 2)

Breadth first search

Breadth first search

(H, 3)

Breadth first search

Dijkstra's algorithm

(A, 0)

Dijkstra's algorithm

Dijkstra's algorithm

(B, 2)

Dijkstra's algorithm

Dijkstra's algorithm

(D, 20)

Dijkstra's algorithm

Dijkstra's algorithm: efficiency

Unsorted list $\mathrm{O}\left(V^{2}\right)$ - easy and good for dense graphs
Heap $\mathrm{O}(E \cdot \log V)$ — trickier but good for sparse graphs

Sorted list $\mathrm{O}(V E)$ - good for nothing

Minimum spanning trees

A spanning tree is a subset of the edges of a graph, which

- form a tree;
- touch every vertex of the original graph.

The minimum spanning tree has least total weight.

MST algorithms

Key observation: in any partition of the vertices, a shortest edge between the parts must connect them.

Prim's algorithm

A

Prim's algorithm

Prim's algorithm

B

Prim's algorithm

D

Prim's algorithm

Floyd's algorithm

Let $x[y] z$ be the length of the shortest path from x to z, going only via $1,2, \ldots, y$, or ∞ if no such edge exists. Then

- $x[0] z$ is the length of the edge from x to z
- $x[N] z$ is the shortest length from x to z
- $x[y] y=x[y-1] y, y[y] z=y[y-1] z$
- $x[y] z=\min \{x[y-1] z, x[y] y+y[y] z\}$

Start with table of $x[0] z$, then convert it to $x[1] z$, then to $x[2] z$ etc.

Floyd's algorithm

for $y=1$ to N do
for $x=1$ to N do
if matrix $[x][y] \neq \infty$ then
for $z=1$ to N do
if matrix $[x][y]+$ matrix $[y][z]<$ matrix $[x][z]$ then

$$
\text { matrix }[x][z] \leftarrow \text { matrix }[x][y]+\text { matrix }[y][z]
$$

Efficiency: $O\left(V^{3}\right)$.

Depth first search

A

Depth first search

A B

Depth first search

A	B	C

Depth first search

A	B	C	D

Depth first search

A	B	C

Depth first search

A	B	C	E

Depth first search

A	B	C	E	H

Depth first search

A	B	C	E

Depth first search

A	B	C

Depth first search

A B

Depth first search

A

Depth first search

Depth first search

F

Depth first search

F G

Depth first search

F

Depth first search

State spaces: examples

- Two robots in a maze, with a single command stream
- A cow in a maze with dynamite to get through walls
- A cow who can only store 5 units of energy, and must replenish at grassy patches
- A ship that takes time to change direction
- A pogo stick that can only gradually change speed

IOI problems

	1	2	3	4	5	6
1999	flower DP	codes string	under heur/graph	lights shortest	flatten maths	land DP
	palin string	car maths	median sorting	post DP	walls shortest	blocks heur
2001	mobiles memory	ioiwari minimax	twofive maths	score minimax	double misc	depot search
2002	frog DP	utopia sorting	xor heur	batch DP	bus graph/sort	rods misc
2003	maintain MST	code DP	reverse heur	guess	DP/search	robots
shortest	boundary geom					
2004	hermes DP	artemis DP	polygon geometry	phidias DP	farmer DP	empodia misc

Questions

