Graph theory *Nodes and edges*

Bruce Merry

South African Computer Olympiad training -p. 1/2

Weighted graph

Directed graph

Multigraph

South African Computer Olympiad training -p. 7/2

- path
- cycle
- connected

South African Computer Olympiad training -p. 7/2

- path
- cycle
- connected
- complete

- path
- cycle
- connected
- complete
- degree

- cycle
- connected
- complete
- degree
- dense and sparse

- path
- cycle
- connected
- complete
- degree
- dense and sparse
- forest

Representation

Η

G

5

3

Н

3

Representation

South African Computer Olympiad training -p. 10/2

Dijkstra's algorithm: efficiency

Unsorted list $O(V^2)$ — easy and good for dense graphs

Heap $O(E \cdot \log V)$ — trickier but good for sparse graphs

Sorted list O(VE) — good for nothing

Minimum spanning trees

A *spanning tree* is a subset of the edges of a graph, which

- form a tree;
- touch every vertex of the original graph.

The minimum spanning tree has least total weight.

MST algorithms

Key observation: in any partition of the vertices, a shortest edge between the parts must connect them.

South African Computer Olympiad training -p. 14/2

Let x[y]z be the length of the shortest path from x to z, going only via $1, 2, \ldots, y$, or ∞ if no such edge exists. Then

- x[0]z is the length of the edge from x to z
- x[N]z is the shortest length from x to z
- x[y]y = x[y-1]y, y[y]z = y[y-1]z
- $x[y]z = \min\{x[y-1]z, x[y]y + y[y]z\}$

Start with table of x[0]z, then convert it to x[1]z, then to x[2]z etc.

Floyd's algorithm

for y = 1 to N do for x = 1 to N do if matrix $[x][y] \neq \infty$ then for z = 1 to N do if matrix[x][y] + matrix[y][z] < matrix[x][z]then matrix $[x][z] \leftarrow matrix[x][y] + matrix[y][z]$ Efficiency: $O(V^3)$.

State spaces: examples

- Two robots in a maze, with a single command stream
- A cow in a maze with dynamite to get through walls
- A cow who can only store 5 units of energy, and must replenish at grassy patches
- A ship that takes time to change direction
- A pogo stick that can only gradually change speed

IOI problems

	1	2	3	4	5	6
1999	flower	codes	under	lights	flatten	land
	DP	string	heur/graph	shortest	maths	DP
2000	palin	car	median	post	walls	blocks
	string	maths	sorting	DP	shortest	heur
2001	mobiles	ioiwari	twofive	score	double	depot
	memory	minimax	maths	minimax	misc	search
2002	frog	utopia	xor	batch	bus	rods
	DP	sorting	heur	DP	graph/sort	misc
2003	maintain	code	reverse	guess	robots	boundary
	MST	DP	heur	DP/search	shortest	geom
2004	hermes	artemis	polygon	phidias	farmer	empodia
	DP	DP	geometry	DP	DP	misc

